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a b s t r a c t

In this study, we control unsteady motion in the wake behind a sphere using a suboptimal feedback con-
trol method based on the sensing of surface pressure. The cost function to be reduced is the square of the
difference between the potential-flow and real pressures at the sphere surface. The actuation velocity
(blowing/suction) is obtained from the suboptimal feedback control procedure. The sensing and actua-
tion on the whole surface of the sphere is considered. This is an ideal case but provides a clear under-
standing of the effect of suboptimal feedback control on the present flow. We choose four different
Reynolds numbers, Re = 100, 250, 300, and 425, covering four different flow regimes (steady axisymmet-
ric, steady planar–symmetric, unsteady planar–symmetric, and unsteady asymmetric flows, respec-
tively). With the present control, the vortex shedding disappears for Re = 300 and 425 and the drag is
significantly reduced for all the Reynolds numbers considered.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Flow over a bluff body is found in many engineering applica-
tions and vortex shedding behind a bluff body increases the mean
drag and generates the drag and lift fluctuations. In particular the
sphere is regarded as a representative three-dimensional bluff
body, and its wake structure is quite complex because of three-
dimensional vortex shedding (Achenbach, 1974b; Constantinescu
and Squires, 2004; Johnson and Patel, 1999; Kim and Durbin,
1988; Mittal, 1999; Mittal and Najjar, 1999; Sakamoto and Haniu,
1990; Taneda, 1978; Yun et al., 2006). So far, many control meth-
ods have been developed for the purpose of mean drag and lift-
fluctuation reduction. Those control methods may be classified as
two groups: one by separation delay and the other by direct wake
modification (Choi et al., 2008).

Examples of drag reduction by separation delay include slip
wall (Choi and Choi, 2000; Milano and Koumoutsakos, 2002; Pon-
cet and Koumoutsakos, 2005), optimal and suboptimal blowing
and suction (Ghattas and Bark, 1997; He et al., 2000; Homescu
et al., 2002; Li et al., 2003; Milano and Koumoutsakos, 2002; Min
and Choi, 1999; Protas and Styczek, 2002), time-periodic blowing
and suction (Fujisawa et al., 2004; Jeon et al., 2004; Lin et al.,
1995; Williams et al., 1992), and surface modifications such as
dimple (Bearman and Harvey, 1976; Choi et al., 2006), roughness
(Achenbach, 1974a; Shih et al., 1994) and seam (Higuchi, 2005).
With these control methods, the streamwise velocity profile inside
ll rights reserved.
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the boundary layer becomes fuller and separation is delayed,
resulting in drag reduction.

Drag reduction has also been achieved by direct wake modifica-
tion. That is, with active or passive control, vortex shedding behind
a bluff body is weakened through the change in its structure and
drag is reduced. In this case, the drag reduction is not necessarily
accompanied by the delay of separation. Examples include the
splitter plate (Anderson and Szewczyk, 1997; Hwang et al., 2003;
Kwon and Choi, 1996; Ozono, 1999), base bleed (Bearman, 1967;
Wood, 1964), uniform blowing (Bagchi, 2007), actuation based
on the sensing of flow variable in the wake (Berger, 1967;
Bergmann et al., 2005; Cortelezzi, 1996; Cortelezzi et al., 1997;
Ffowcs and Zhao, 1989; Gillies, 1998; Graham et al., 1999; Huang,
1996; Li and Aubry, 2003; Park et al., 1994; Protas, 2004; Rousso-
poulos, 1993), ventilation (Suryanarayana and Meier, 1995), and
geometry modification (Bearman and Owen, 1998; Darekar and
Sherwin, 2001; Owen et al., 2000, 2001; Park et al., 2006; Petrusma
and Gai, 1994; Rodriguez, 1991; Tanner, 1972; Tombazis and
Bearman, 1997; Zdravkovich, 1981), blowing and suction (Kim
and Choi, 2005; Kim et al., 2004) and wall slip (Poncet et al.,
2008) varying along the spanwise direction.

A summary about most of studies mentioned above was given
by Choi et al. (2008), and thus we do not repeat it here. In the pres-
ent study, our objective is to reduce drag on a sphere using an ac-
tive feedback control. Thus, in the below, we discuss results from
previous active controls applied to a sphere. In addition, the results
from active controls of three-dimensional flow over a circular cyl-
inder are discussed here, because the response of this flow to actu-
ations may have common features with that of flow over a sphere
(see, for example, Mittal and Najjar, 1999).

http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.12.010
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Fig. 1. Schematic diagram of the coordinates and suboptimal feedback control.
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Ghattas and Bark (1997) applied an optimal control to the flow
over a sphere to minimize a cost function (rate of energy dissipa-
tion). They provided blowing and suction based on the sensing of
whole velocity field and the cost function was reduced. As a result,
the recirculation region disappeared. However, they considered
only a steady state base flow at Re = 130.

Milano and Koumoutsakos (2002) and Poncet and Koumoutsakos
(2005) controlled two- and three-dimensional flows over a circular
cylinder using wall slip or blowing/suction at Re = u1dc/m = 500,
where u1 is the free-stream velocity, dc the cylinder diameter,
and m the kinematic viscosity. The optimal distribution of each
actuation was obtained from a clustering genetic algorithm. The
mechanism of drag reduction was the separation delay. Based on
the comparison of results from two types of actuations, they
concluded that the wall slip has a wider parameter space for drag
reduction than the blowing and suction. It was also shown that
the amount of drag reduction is proportional to the square of
control input energy and the force oscillations are inversely
proportional to the control input energy.

Jeon et al. (2004) conducted an active control of the flow over a
sphere at Re = 6 � 104 � 2 � 105 by providing a high-frequency
blowing/suction from a slot located just before the separation
point. The disturbances from the high-frequency forcing grew in-
side the boundary layer, which delayed laminar separation and
reattached separated flow through the growth of the disturbances
along the separating shear layer. Consequently, main separation
was delayed and a significant amount of drag reduction was
achieved.

Kim and Choi (2005) applied a distributed forcing to flow over a
circular cylinder: a sinusoidal blowing and suction in the spanwise
direction (but constant in time) from the slots located at upper and
lower surfaces of the cylinder. Both laminar and turbulent flows in
the wake were considered. It was shown that the forcing attenu-
ates or annihilates the vortex shedding through the phase mis-
match along the spanwise direction in the vortex shedding
process and thus significantly reduces the mean drag and the drag
and lift fluctuations.

Niazmand and Renksizbulut (2005) investigated the effect of
non-uniform blowing (maximum at the stagnation point and 0 at
the base point, respectively) on the flow over a spinning sphere
at 10 < Re < 300. With the blowing, the drag was reduced from
the reduction in the skin friction at low Re’s (Re = 200 and 250),
but the amount of drag reduction was negligible at Re = 300.
Bagchi (2007) investigated the effect of uniform blowing or suction
on the flow over a sphere at 1 6 Re 6 300. Owing to the blowing,
the onset of recirculation was delayed to a higher Reynolds number
(Re P 38), but the length of recirculation was enlarged. The drag
was reduced from the decrease in the skin friction, but the amount
of drag reduction decreased with increasing Reynolds number. On
the other hand, the suction eliminated the recirculation region in
the wake but increased drag due to the increase in the skin friction.

Poncet et al. (2008) controlled the flow past a circular cylinder
at Re = 300 by the wall slip varying in the spanwise direction. The
optimal wall slip distribution was obtained from parameter opti-
mization and resulted in a higher drag reduction than that from
uniform wall slip along the spanwise direction. They showed that
the streamwise vortex braids introduced by the spatially varying
wall slip weaken the primary spanwise vortices in the wake and
the drag is reduced. This mechanism is similar to that of Kim and
Choi (2005).

The vortical structure in the sphere wake is three-dimensional
and there is no primary azimuthal vortex in this flow unlike the
case of cylinder wake. Therefore, an introduction of spanwise mod-
ulation into the flow over a sphere may add more three-dimen-
sionality to the wake and may not reduce the mean drag and lift
fluctuations (Choi et al., 2008). This is very different from the case
of flow over a circular cylinder, in which three-dimensional modu-
lation breaks the two-dimensional primary vortex into three-
dimensional one, reducing its strength and drag (Darekar and
Sherwin, 2001; Kim and Choi, 2005; Poncet et al., 2008; Tombazis
and Bearman, 1997). Therefore, it is important to develop a control
method for the flow over a sphere for the reduction of mean drag
and lift fluctuations.

Significant efforts have been made in developing systematic
control methods based on the mathematical theory such as the
optimal, suboptimal, and linear controls (see for reviews Bewley,
2001; Choi et al., 2008; Collis et al., 2004; Kim and Bewley,
2007). In the present study, we apply the suboptimal control to
flow over a sphere for drag reduction. The suboptimal control algo-
rithm was first suggested by Choi et al. (1993) and further applied
to various flows (Lee et al., 1998; Min and Choi, 1999; Kang and
Choi, 2002). The objective of present study is to see the perfor-
mance of this control in manipulating three-dimensional vortical
structures in the wake behind the sphere. The suboptimal control
procedure is briefly introduced in Section 2, and the numerical
method is given in Section 3. The control results are shown and
discussed in Section 4, followed by a summary in Section 5.

2. Suboptimal control method

2.1. Cost function

The choice of cost function to be reduced is one of the most
important steps in the optimal and suboptimal controls. In the
present study, we choose the cost function as

JðwÞ ¼
Z

Cs

pt � pðh;/Þð Þ2R2 sin hdhd/; ð1Þ

where w is the actuation (blowing/suction) on the control region
(Cc), Cs the sensing region, pt the target pressure, R the sphere ra-
dius, p(h,/) the pressure on Cs, and h and / denote the polar and azi-
muthal angles, respectively (Fig. 1). The sensing (Cs) and control (Cc)
regions are the sphere surface. The cost function Eq. (1) is the square
of the difference between the target and real pressures on the sphere
surface. In this study, the target pressure is set to be that of potential
flow, aiming that the controlled flow has a large pressure recovery
on the rear surface of the sphere. We also tested another cost func-
tion (form drag), JðwÞ ¼

R
Cs

pðh;/Þ cos hð ÞR2 sin hdhd/, but the control
result was much better with Eq. (1) in terms of reducing the mean
drag and lift fluctuations. This result is similar to that shown for
the case of circular cylinder (Min and Choi, 1999).

2.2. Suboptimal control procedure

At each instant of time, an actuation w of reducing J is found
iteratively. That is, J(wk+1(t)) < J(wk(t)), where k is the iteration in-
dex. From the Taylor series expansion,
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J wkþ1ðtÞ
� �

� J wkðtÞ
� �

þ
DJ wkðtÞ
� �
Dw

wkþ1ðtÞ � wkðtÞ
� �

; ð2Þ

where

DJ
Dw

~w ¼ lim
�!0

Jðwþ �~wÞ � JðwÞ
�

ð3Þ

and ~w is an arbitrary perturbation to w. To satisfy J(wk+1(t)) < J(wk(t))
from Eq. (2), a gradient algorithm is used,

wkþ1ðtÞ � wkðtÞ ¼ �a
DJ wkðtÞ
� �
Dw

; ð4Þ

where a(>0) is the descent parameter. One may obtain the optimal
actuation, w, from the iteration of Eq. (4). However, this iteration
process is computationally possible but impossible in real experi-
ment because the flow variable should be measured iteratively. It
is also known from Choi et al. (1993) that the cost function is signif-
icantly reduced at the first iteration. Therefore, for the practical
implementation within the framework of suboptimal control, we
do not perform any iteration. In other words, we do not pursue glo-
bal optimization for practical implementation. Then, the actuation
of reducing J is found at each control time as follows:

wðtÞ ¼ �a
DJ
Dw

: ð5Þ

Here, the parameter a is chosen to lead to a given maximum value
of w, which provides a regularity in the system answer, and DJ=Dw
is obtained from Eq. (1)

DJ
Dw

~w ¼
Z

Cs

�2 pt � pðh;/Þð ÞDp
Dw

~wR2 sin hdhd/: ð6Þ

We use the Navier–Stokes and continuity equations to evaluate
Dp=Dw in Eq. (6) and the procedure is explained in the below.

The governing equations of fluid flow are the incompressible
Navier–Stokes and continuity equations, non-dimensionalized by
the free-stream velocity u1 and the sphere diameter d,

@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xj@xj
; ð7Þ

@ui

@xi
¼ 0; ð8Þ

with the boundary conditions

u ¼ wðh;/Þr̂ on Cc

u ¼ given ðin Section3Þ elsewhere

�
; ð9Þ

where t is time, xi the coordinates, ui(=u) the corresponding velocity
components, p the pressure, and r̂ is the unit vector in the radial
direction. Eqs. (7)–(9) are discretized in time using an implicit
method (e.g. Crank–Nicolson method) for the linear terms and an
explicit method (e.g. a third-order Runge–Kutta method) for the
nonlinear terms (see on how to choose these discretization methods
Choi et al., 1993; Min and Choi, 1999:

unþ1
i þ Dtc

2
@pnþ1

@xi
� Dtc

2Re
@2unþ1

i

@xj@xj
¼ RHSn

i ; ð10Þ

@unþ1
i

@xi
¼ 0; ð11Þ

and

unþ1 ¼ wnþ1ðh;/Þr̂ on Cc

unþ1 ¼ given elsewhere

(
; ð12Þ

where Dtc is the control time interval, the superscript n + 1 denotes
the next control time step at which a new actuation is applied, and
RHSn
i includes all the terms associated with the control time step n.

We define qi and q using the Fréchet differential as follows:

qi ¼
Dunþ1

i

Dwnþ1
~wnþ1; ð13Þ

q ¼ Dpnþ1

Dwnþ1
~wnþ1: ð14Þ

Taking the Fréchet differential to Eqs. (10)–(12), we obtain the
following:

qi þ
Dtc

2
@q
@xi
� Dtc

2Re
@2qi

@xj@xj
¼ 0; ð15Þ

@qi

@xi
¼ 0; ð16Þ

and

q ¼ ~wðh;/Þr̂ on Cc

q ¼ 0 elsewhere

(
ð17Þ

The qi and q are obtained from the following convolution integral:

qiðr; h;/Þ ¼
R

Cc
giðr; h� h0;/� /0Þ~wðh0;/0Þr2 sin h0dh0d/0;

qðr; h;/Þ ¼
R

Cc
Pðr; h� h0;/� /0Þ~wðh0;/0Þr2 sin h0dh0d/0:

ð18Þ

Here gi and P are the solutions of the following equations and
boundary conditions:

gi þ
Dtc

2
@P
@xi
� Dtc

2Re
@2gi

@xj@xj
¼ 0; ð19Þ

@gi

@xi
¼ 0; ð20Þ

and

g ¼ dðh;/Þr̂ on Cc

g ¼ 0 elsewhere

�
; ð21Þ

where d is the Dirac delta function.
Once P is obtained, Eq. (6) becomes

DJðh;/Þ
Dw

¼
Z

Cs

�2 pt � pðh0;/0Þð ÞPðh0 � h;/0 � /ÞR2

� sin h0dh0d/0; ð22Þ

where h0 and /0 are the polar and azimuthal angles used for the con-
volution integral, respectively. Then, from Eq. (5), the actuation w
becomes

wnþ1ðh;/Þ ¼ 2a
Z

Cs

pt � pðh0;/0Þð ÞPðh0 � h;/0 � /ÞR2 sin h0dh0d/0:

ð23Þ

As shown in Eq. (23), the pressure on Cs is measured at each
control time. However, P is evaluated only one time before the
start of control, because the governing equations for P, Eqs.
(19)–(21), do not contain any time-varying variables. The value
of a is chosen such that the maximum value of w is
wmax = 0.05u1,0.1u1 or 0.15u1. For example, for wmax = 0.1u1,a
varies in time and ranges from 335 to 460 (Re = 425). To enforce
the zero-net mass flow rate from control, the mean value of w is
subtracted from w.

In our computations, the sensors and actuators occupy the same
positions on the sphere surface, which cannot be realized in a prac-
tical setting. To realize the present control into practical situations,
one may place the sensors and actuators alternately along the
streamwise direction (and the azimuthal direction), and obtain
the actuation distribution at Cc from Eq. (23) with the sensing
pressure at Cs.
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Fig. 3. Instantaneous vortical structures: (a) Re = 100 (steady axisymmetric); (b)
250 (steady planar–symmetric); (c) 300 (unsteady planar–symmetric); and (d) 425
(unsteady asymmetric).
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3. Numerical method

We use an immersed boundary method (IB method) in a cylin-
drical coordinate to solve Eqs. (7)–(9). Using an IB method (Kim
et al., 2001), we obtained accurate solutions for flow over a sphere
at low and high Reynolds numbers (Kim et al., 2001; Kim and Choi,
2002; Yun et al., 2006). In the present case containing time-varying
blowing and suction, however, artificial oscillations are observed in
the pressure near the immersed boundary and in the time history
of drag on the sphere. Therefore, we devise a modified version of IB
method to remove or significantly attenuate the artificial oscilla-
tions, and briefly explain it here.

The governing equations and boundary conditions with an IB
method are

@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xj@xj
þ fi; ð24Þ

@ui

@xi
� q ¼ 0; ð25Þ

and

u ¼ wðh;/; tÞr̂ on Cc; ð26Þ

where fi and q are the momentum forcing and mass source/sink,
respectively. A staggered grid system is used such that ui and fi

are defined at the cell surface, and p and q are defined at the cell
center. The detailed procedures of obtaining fi and q are found in
Kim et al. (2001).

To solve Eqs. (24)–(26), a fractional step method is used (see
Kim and Choi, 2002 for the detail). In the second step of the frac-
tional step method, one has to solve a Poisson equation for the
pseudo-pressure together with the Neumann boundary condition.
In Kim et al. (2001), the Neumann boundary condition is applied
only at the outer boundary as shown in Fig. 2a. In the present IB
method, the Neumann boundary condition is also applied at the
immersed boundary. This modification removes or significantly re-
duces the force oscillations (Jeon and Choi, 2009).

The computational domain size in the cylindrical coordinate
is � 15d 6 x 6 15d, 0 6 r 6 15d, and 0 6 h < 2P, Dirichlet boundary
conditions (ux = u1, ur = uh = 0) are applied at the inflow and far-
field boundaries and a convective boundary condition (@ui/@t +
c@ui/@x = 0) is used for the outflow boundary, where c is the
plane-averaged streamwise velocity at the exit.

We consider four different Reynolds numbers, Re = 100, 250,
300, and 425, representing four different flow regimes, steady axi-
symmetric, steady planar–symmetric, unsteady planar–symmetric,
and unsteady asymmetric flows, respectively. The numbers of grid
points used are, 145(x) � 61(r) � 65(h), 193(x) � 91(r) � 65(h),
289(x) � 161(r) � 65(h) and 449(x) � 161(r) � 65(h), respectively,
for Re = 100, 250, 300, and 425. The computational time step is
Dt = 0.01d/u1. The numerical accuracy was confirmed by increas-
(a) (b)
Fig. 2. Boundary condition for pseudo-pressure: (a) original IB method and (b)
modified IB method. The thick solid lines denote the grid lines where the Neumann
boundary condition for pseudo-pressure is satisfied.
ing the number of grid points in each direction. Fig. 3 shows the
instantaneous vortical structures identified using the method of
Jeong and Hussain (1995). As shown, four different flow regimes
are well identified from this figure. This result agrees very well
with those obtained by Johnson and Patel (1999), Kim et al.
(2001) and Kim and Choi (2002).

The control time interval of updating the actuation based on Eq.
(23) is set to be Dtc = 0.05d/u1. The control result is not much af-
fected by the choice of Dtc, once Dtc is much smaller than the per-
iod of vortex shedding. For example, for each Reynolds number, the
final flow state from the control with Dtc = 0.5d/u1 is nearly the
same as that with Dtc = 0.05d/u1. On the other hand, when Dtc is
very small such as Dtc = Dt (meaning that the actuation is updated
at every computational time step), the surface pressure reacts on
the actuation itself rather than on the flow change due to the actu-
ation. That is, in this case, the sensor and actuator talk to each
other regardless of the flow modification by the actuation. There-
fore, it is required to have Dtc > Dt to avoid this problem: practi-
cally, Dtc larger than 3 � 4Dt is good enough.
4. Results

Fig. 4a shows the instantaneous surface pressure coefficients
ðCP ¼ ðp� p1Þ= 1

2 qu2
1Þ along the polar angle (h) at several azi-

muthal angles (/) for Re = 425 (see Fig. 3d for uncontrolled flow),
together with the surface pressure of potential flow. Although
the vortical structure in the wake is fully three-dimensional, the
variation of CP along the azimuthal angle is weak. Thus, the actua-
tion velocity slightly varies along the azimuthal angle (Fig. 4b). On
the other hand, w significantly varies along the polar angle like the
variation of CP. The w is negative near h = 90� and positive near the
stagnation and base points, meaning that suction is applied near
h = 90� and blowing near h = 0� and 180�. Because of the suction
around h = 90�, the near-wall velocity profile becomes fuller and
the separation delays, resulting in the recovery of the pressure
on the rear surface (Fig. 5). As shown in Fig. 5, with larger wmax,
the near-wall velocity profile becomes fuller and CP recovers more
on the rear surface. Therefore, the skin friction increases and the
form drag significantly decreases with the present suboptimal con-
trol. Fig. 6 shows the variations of cost function, and total drag, lift
and skin-friction drag coefficients for Re = 425:

CD ¼ ðtotal dragÞ= 1
2 qu2

1pR2;

CLðmagnitude of lift coefficientÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

y þ C2
z

q
;

Cf ¼ ðfriction dragÞ= 1
2 qu2

1pR2:

ð27Þ

Here, Cy and Cz are the lift coefficients in y and z directions, respec-
tively. As expected, the cost function decreases further with
increasing wmax. The total drag and lift coefficients also decrease
with the control, whereas the skin-friction drag increases as we ex-
pect from Fig. 5a.

The performance of the present suboptimal control is summa-
rized in Table 1. Note that the present drag coefficients of uncon-
trolled flow agree well with those of Johnson and Patel (1999)



(a) (b)

Fig. 4. Instantaneous surface pressure coefficients and actuation velocities along the polar angle at several azimuthal angles for Re = 425 (tu1/d = 0; just before control): (a) CP

and (b) w(wmax = 0.1u1). —, / = 56�; –�–, 146�; – – –, 236�; –��–, 326�. The long dashed line in (a) denotes the surface pressure of potential-flow.

(a) (b)

Fig. 5. Profiles of the polar velocity and surface pressure coefficient (Re = 425): (a) uh at h = 90�; (b) CP. —, No control; –�–, wmax/u1 = 0.05; – – –, 0.1; –��–, 0.15.

(a) (c)

(b) (d)

Fig. 6. Time histories of the cost function, and total drag, lift and skin-friction drag coefficients (Re = 425): (a) J; (b) CD; (c) CL; and (d) Cf. —, No control; –�–, wmax/u1 = 0.05; – – –,
0.1; –��–, 0.15.
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Table 1
Performance of the control. CD0 and CL0 are the total drag and lift coefficients in the case of no control. See Eq. (27) for the definitions of CD and CL, and Eqs. (28) and (29) for the
definitions of ci and ca, respectively. S, P, and A denote the axisymmetric, planar–symmetric, asymmetric flows, respectively.

Re CD0 CL0 wmax/u1 ðCD�CD0
Þ

CD0
(%)

ðCL�CL0
Þ

CL0
(%) Efficiency Flow characteristics after control

ci ca

100 1.087 0 0.05 �2.2 – 1.100 0.696 Steady S
(Steady S) 0.10 �4.8 – 1.099 0.768 Steady S

0.15 �7.7 – 1.098 0.824 Steady S

250 0.702 0.060 0.05 �6.6 �100 2.015 1.415 Steady S
(Steady P) 0.10 �12.0 �100 1.715 1.301 Steady S

0.15 �17.4 �100 1.648 1.306 Steady S

300 0.657 0.067 0.05 �9.5 �86.8 2.754 1.948 Steady P
(Unsteady P) 0.10 �16.1 �100 2.091 1.578 Steady S

0.15 �21.4 �100 1.915 1.516 Steady S

425 0.587 0.061 0.05 �14.4 �53.4 3.870 2.675 Unsteady P
(Unsteady A) 0.10 �23.2 �100 2.858 2.128 Steady S

0.15 �29.8 �100 2.496 1.945 Steady S
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where CD0 ¼ 0:70 and CL0 ¼ 0:062 for Re = 250, and CD0 ¼ 0:656
and CL0 ¼ 0:069 for Re = 300, respectively. The control efficiency
is defined as the ratio of the save power to the control input power.
As indicated by Choi et al. (2008), a rigorous estimation of the effi-
ciency is not easy because it depends on how the mechanism of the
control device is set up to realize the control input in practical sit-
uations. The ideal control efficiency may be defined as (Choi et al.,
2008)

ci ¼
pR2ðCD0 � CDÞR

Cc
w3 þ 2pwþ 4

Re
2
R w2� �

R2 sin hdhd/
: ð28Þ

The first term in the control input power is the energy convection,
the second one is the pressure work, and the third one is from the
surface curvature (Fukagata et al., 2009). On the other hand, the
lowest possible control efficiency may be defined as

ca ¼
pR2ðCD0 � CDÞR

Cc
jw3j þ 2jpwj þ 4

Re
2
R w2� �

R2 sin hdhd/
: ð29Þ

The actual efficiency of a control method may be in between ci and
ca. See Choi et al. (2008) for more discussion on the control efficiency.
The efficiencies ci and ca for all the control cases except at Re = 100
are higher than 1, indicating that the present suboptimal control is
cost effective. The efficiency ca increases with increasing Reynolds
number, but (with the exception of Re = 100) decreases with increas-
ing wmax, although the percentage of drag reduction increases further
with increasing wmax. When we look at the control power input, the
values of

R
Cc
jw3jR2 sinhdhd/ and

R
Cc

4
Re

2
Rw

2R2 sinhdhd/ are much smal-

ler than that of
R
Cc

2jpwjR2 sin hdhd/. That is, the pressure work con-
sumes most of control power input.

The values of CL decrease for all the control cases. At large wmax’s
(0.1 and 0.15u1), the flow becomes steady and CL becomes zero.
Fig. 7 shows the instantaneous vortical structures in the wake at
Re = 425 for different wmax’s. As shown, at wmax = 0.1 and 0.15u1,
the flow becomes steady axisymmetric, but is unsteady planar–
symmetric at wmax = 0.05u1. The isolated vortices observed in the
wake in Fig. 7b and c represent the recirculating flows shifted
downstream due to the control. A similar phenomenon was also
found for flow over a sphere with uniform blowing by Bagchi
(a) (b) (c)
Fig. 7. Instantaneous vortical structures at Re = 425: (a) wmax/u1 = 0.05; (b) 0.1;
and (c) 0.15.
(2007). The vortical structures at other Reynolds numbers look
similar to those in Fig. 7b and c when the controlled flows become
steady. The change in the flow characteristics due to control is de-
scribed in Table 1.

The actuation profile from the suboptimal control for Re = 425 is
given as a dashed line in Fig. 8, showing suction near h = 90� and
blowing near h = 0� and 180�. It is expected that the suction near
h = 90� and blowing near 180� provide drag reduction, respectively,
because the suction delays the separation and the blowing near the
base point provides a thrust to the body as well as reduces the
interaction of vortices growing along the separating shear layer.
On the other hand, it was shown from Bagchi (2007) that, at low
Reynolds number, uniform blowing reduces the drag through the
decrease in the skin friction but uniform suction increases the drag
even with elimination of recirculation region. Therefore, we apply
the suction and blowing profiles obtained from the present ap-
proach separately to flow over a sphere, to see how each of these
actuation profiles plays a role of drag reduction. Fig. 8a and b
shows the corresponding blowing and suction profiles (called
blowing and suction controls, respectively, hereafter). Fig. 9 shows
the results of blowing and suction controls for Re = 425, together
with those of no control and suboptimal feedback control. The sur-
face pressure is recovered much more by suction control than by
blowing control, and the overall shape of Cp from suction control
is nearly same as that from suboptimal control (Fig. 9a). Thus,
the amount of form drag reduction is much more with suction con-
trol than with blowing control (Fig. 9b). The friction drag is signif-
icantly increased by suction control, whereas it is decreased by
blowing control (Fig. 9c). This result is similar to that shown in
Bagchi (2007). The friction drag from suboptimal control is in-
creased but the amount of increase is smaller than that of suction
control due to the contribution from blowing control. It is interest-
ing to see that the total drag is reduced more by blowing control
than suction control although the pressure recovery is large from
suction control. Therefore, the blowing part in the suboptimal
actuation profile plays an important role in reducing drag. The
instantaneous vortical structures from blowing and suction con-
trols, shown in Fig. 10, are similar to those of no control and sub-
optimal control, respectively. This result is also expected from
the distributions of surface pressure coefficient shown in Fig. 9a.
However, there is a difference between the suction and suboptimal
controls, in that the flow structure in the wake is steady planar–
symmetric for suction control but is steady axisymmetric for sub-
optimal control. Therefore, the combined effect from both suction
and blowing controls is necessary to obtain the present results of
suboptimal control.



(a) (b)

Fig. 10. Instantaneous vortical structures at Re = 425 and wmax = 0.1u1: (a) blowing
control and (b) suction control.

(a) (b)

Fig. 8. Open-loop actuation profiles along the polar angle (Re = 425 and wmax = 0.1u1): (a) blowing control and (b) suction control. The dashed line is the suboptimal
actuation profile.

(a) (c)

(b) (d)

Fig. 9. Control results from blowing and suction controls (Re = 425 and wmax = 0.1u1): (a) surface pressure coefficient; (b) form drag; (c) friction drag; and (d) total drag. —, No
control; –�–, blowing control; – – –, suction control; � � � � � �, suboptimal control.
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5. Summary

In the present study, we developed a suboptimal feedback con-
trol method for flow over a sphere. The cost function to be reduced
was the square of the difference in the surface pressure between
the real and potential flows. The actuation (blowing/suction) veloc-
ity on the sphere surface was determined based on the sensing of
surface pressure through the suboptimal control procedure. Using
this suboptimal control, the suction was applied near the top and
bottom surfaces of the sphere and the blowing was given near
the stagnation and base points. Due to the suction part, the polar
velocity became fuller near the surface and delayed separation,
resulting in the pressure recovery at the rear surface of the sphere
and significant reduction in the form drag. However, this suction
increased the friction drag. The blowing part did not much modify
the surface pressure but decreased the skin friction. With this com-
bined effect, the total drag was decreased significantly by the pres-
ent suboptimal control. The lift coefficient also became zero or
decreased significantly. The vortical structures in the wake were
considerably modified due to the control. Finally, as the Reynolds
number increased (within the range of Reynolds numbers consid-
ered), the amount of drag reduction increased and the control effi-
ciency increased.



S. Jeon, H. Choi / International Journal of Heat and Fluid Flow 31 (2010) 208–216 215
In the present study, an open-loop actuation profile was con-
structed for drag reduction from the results of suboptimal feedback
control and produced good performance in drag reduction. Cur-
rently we are devising an ‘optimal’ open-loop actuation profile
whose component consists of a few different wavelengths in the
polar angle. We are also considering an active open-loop control
where the blowing and suction are applied only on the limited area
of the sphere surface. These results will be reported elsewhere.
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